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LETTER TO THE EDITOR

Vectorial Ribaucour transformations for the Lam é
equations

Q P Liu† and Manuel Mãnas
Departamento de Fı́sica Téorica, Universidad Complutense, E28040-Madrid, Spain

Received 2 October 1997

Abstract. The vectorial extension of the Ribaucour transformation for the Lamé equations of
orthogonal conjugate nets in multidimensions is given. We show that the composition of two
vectorial Ribaucour transformations with appropriate transformation data is again a vectorial
Ribaucour transformation, from which follows the permutability of the vectorial Ribaucour
transformations. Finally, as an example we apply the vectorial Ribaucour transformation to the
Cartesian background.

1. Introduction

The connection between soliton theory and differential geometry of surfaces in Euclidean
space is well established. Many systems considered in geometry have been analysed
independently in soliton theory, as examples we cite the Liouville and sine–Gordon
equations which characterize minimal and pseudo-spherical surfaces, respectively. An
important case is given by the Darboux equations for conjugate systems of coordinates that
were solved 12 years ago by Zakharov and Manakov [19], in a matrix generalization, using
the ∂̄-dressing. Furthermore, the Lamé equations for orthogonal conjugate nets were solved
only very recently [18] by Zakharov, imposing appropriate constraints in the Marchenko
integral equation associated with the Darboux equations.

In this letter we present a vectorial extension of a transformation that preserves the Lamé
equations which is known as the Ribaucour transformation [15]. This vectorial extension
can be thought of as the result of the iteration of the standard Ribaucour transformation,
i.e. sequences of Ribaucour transformations. The expressions that we found are expressed
in terms of multi-Grammian-type determinants, as in the fundamental transformation case.

The layout of this letter is as follows. In section 2 we recall the Darboux system for
conjugate nets and its vectorial fundamental transformations, then in section 3 we present
the Laḿe equations for orthogonal conjugate nets and show how the vectorial fundamental
transformation reduces to the vectorial Ribaucour transformation. Here we also prove that,
given an orthonormal basis of tangent vectors to the orthogonal conjugate coordinate lines,
the vectorial Ribaucour transformation preserves this character. Then, in section 4 we
prove the permutability for the vectorial Ribaucour transformation basing the discussion on
a similar existing result for the vectorial fundamental transformation. Finally, in section 5
we present an example: we dress the zero background, specifically the Cartesian coordinates.
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2. Vectorial fundamental transformation

The Darboux equations

∂βij

∂uk
= βikβkj i, j, k = 1, . . . , N, with i, j, k different (1)

for theN(N−1) functions{βij } i,j=1,...,N
i 6=j

of u := (u1, . . . , uN), characterizeN -dimensional

submanifolds ofRD, N 6 D, parametrized by conjugate coordinate systems [2, 5], and are
the compatibility conditions of the following linear system,

∂Xj

∂ui
= βjiXi i, j = 1, . . . , N, i 6= j (2)

involving suitableD-dimensional vectorsXi , tangent to the coordinate lines. The so-called
Lamé coefficients satisfy

∂Hj

∂ui
= βijHi i, j = 1, . . . , N, i 6= j (3)

and the points of the surfacex can be found by means of

∂x

∂ui
=XiHi i = 1, . . . , N (4)

which is equivalent to the more standard Laplace equation

∂2x

∂ui∂uj
= ∂ lnHi

∂uj

∂x

∂ui
+ ∂ lnHj

∂ui

∂x

∂uj
i, j = 1, . . . , N, i 6= j.

The fundamental transformation for the Darboux system was introduced in [6, 8], see
also [7, 9], and its vectorial extension was given in a discrete framework in [4, 11]. It requires
the introduction of a potential in the following manner: given vector solutionsξi ∈ V and
ζ∗i ∈ W ∗ of (2) and (3),i = 1, . . . , N , respectively, whereV,W are linear spaces andW ∗

is the dual space ofW , one can define a potential matrix�(ξ, ζ∗) : W → V through the
equations

∂�(ξ, ζ∗)
∂ui

= ξi ⊗ ζ∗i . (5)

We give here the continuous version of the vectorial fundamental transformation for
quadrilateral lattices [14, 6].

Vectorial fundamental transformation.Given solutionsξi ∈ V and ξ∗i ∈ V ∗ of (2) and
(3), i = 1, . . . , N , respectively, new rotation coefficientŝβij , tangent vectorsX̂i , Lamé
coefficientsĤ and points of the surfacêx are given by

β̂ij = βij − 〈ξ∗j , �(ξ, ξ∗)−1ξi〉
X̂i =Xi −�(X, ξ∗)�(ξ, ξ∗)−1ξi

Ĥi = Hi − ξ∗i �(ξ, ξ∗)−1�(ξ, H)

x̂ = x−�(X, ξ∗)�(ξ, ξ∗)−1�(ξ, H). (6)

Here we are assuming that�(ξ, ξ∗) is invertible. We shall refer to this transformation
as the vectorial fundamental transformation with transformation data(V , ξi , ξ

∗
i ).
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3. Vectorial Ribaucour transformations

The Laḿe equations describeN -dimensional conjugate orthogonal systems of coordinates
[3, 10, 14]:

∂βij

∂uk
− βikβkj = 0 i, j, k = 1, . . . , N, with i, j, k different (7)

∂βij

∂ui
+ ∂βji
∂uj
+

∑
k=1,...,N
k 6=i,j

βkiβkj = 0 i, j = 1, . . . , N, i 6= j. (8)

The following is an important observation; the scalar case appears in [16].

Lemma 1. Given a solutionξi ∈ V of (2) then

ξ∗i :=
(
∂ξi
∂ui
+

∑
k=1,...,N
k 6=i

ξkβki

)t

(9)

wheret means transpose, is aV ∗-valued solution of (3) if and only if (8) holds.

Proof. Just note that from (1) and (2) it follows that

∂ξ∗j
∂ui
= βijξ∗i +

(
∂βij

∂ui
+ ∂βji
∂uj
+

∑
k=1,...,N
k 6=i,j

βkiβkj

)
ξt
i .

�

A second observation is as follows.

Lemma 2. Givenβ ’s solving the Laḿe equations (7) and (8),ξi ∈ V andζi ∈ W solutions
of (2) andξ∗i andζ∗i as prescribed in (9),i = 1, . . . , N , then

∂

∂ui

(
�(ξ, ζ∗)+�(ζ, ξ∗)t −

∑
k=1,...,N

ξk ⊗ ζ t
k

)
= 0 i = 1, . . . , N.

Proof. Using (5) and the definition (9) we have

∂

∂ui
(�(ξ, ζ∗)+�(ζ, ξ∗)t) = ξi ⊗

(
∂ζi
∂ui
+

∑
k=1,...,N
k 6=i

ζkβki

)t

+
(
∂ξi
∂ui
+

∑
k=1,...,N
k 6=i

ξkβki

)
⊗ ζ t

i

and recalling thatξiβki = (∂/∂ui)ξk andζiβki = (∂/∂ui)ζk we obtain the statement of the
lemma. �

Therefore, as�(ξ, ζ∗) and�(ζ, ξ∗) are defined by (5) up to additive constant matrices,
the previous lemma is telling us that we can take those constants such that

�(ξ, ζ∗)+�(ζ, ξ∗)t =
∑

k=1,...,N

ξk ⊗ ζ t
k.

We now can prove the following lemma.
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Lemma 3. Suppose one is given a solutionβij of the Laḿe equations (7) and (8),ξi ∈ V
andζi ∈ W solving (2) andξ∗i andζ∗i as prescribed in (9). Then, if

�(ξ, ζ∗)+�(ζ, ξ∗)t =
∑

k=1,...,N

ξk ⊗ ζ t
k

�(ξ, ξ∗)+�(ξ, ξ∗)t =
∑

k=1,...,N

ξk ⊗ ξt
k

(10)

the vectorial fundamental transformation (6)

β̂ij = βij − 〈ξ∗j , �(ξ, ξ∗)−1ξi〉
ζ̂i = ζi −�(ζ, ξ∗)�(ξ, ξ∗)−1ξi

ζ̂
∗
i = ζ∗i − ξ∗i �(ξ, ξ∗)−1�(ξ, ζ∗)

is such that

ζ̂
∗
i :=

(
∂ ζ̂i
∂ui
+

∑
k=1,...,N
k 6=i

ζ̂kβ̂ki

)t

.

Proof. Using (5), (6) and (9) we find that

∂ ζ̂i
∂ui
+

∑
k=1,...,N
k 6=i

ζ̂kβ̂ki = (ζ∗i )t −�(ζ, ξ∗)�(ξ, ξ∗)−1(ξ∗i )
t

−
∑

k=1,...,N

〈ξ∗i , �(ξ, ξ∗)−1ξk〉(ζk −�(ζ, ξ∗)�(ξ, ξ∗)−1ξk)

together with the identity

〈ξ∗i , �(ξ, ξ∗)−1ξk〉 = ξt
k(�(ξ, ξ

∗)−1)t(ξ∗i )
t

implies

∂ ζ̂i
∂ui
+

∑
k=1,...,N
k 6=i

ζ̂kβ̂ki = (ζ∗i )t −
[
�(ζ, ξ∗)�(ξ, ξ∗)−1

+
∑

k=1,...,N

(ζk −�(ζ, ξ∗)�(ξ, ξ∗)−1ξk)⊗ ξt
k(�(ξ, ξ

∗)−1)t
]
(ξ∗i )

t.

Now, the constraints (10) applied to the above expression give

∂ ζ̂i
∂ui
+

∑
k=1,...,N
k 6=i

ζ̂kβ̂ki = (ζ∗i )t −�(ξ, ζ∗)t(�(ξ, ξ∗)−1)t(ξ∗i )
t

which when transposed gives the desired equality. �

With these lemmas available we are able to state the main theorem of this letter.
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Theorem. The vectorial fundamental transformation (6) when applied to a solution of
the Laḿe equation preserves the orthogonal character of the conjugate net whenever the
transformation data (V , ξi , ξ

∗
i ) satisfy

(ξ∗i )
t = ∂ξi

∂ui
+

∑
k=1,...,N
k 6=i

ξkβki

�(ξ, ξ∗)+�(ξ, ξ∗)t =
∑

k=1,...,N

ξk ⊗ ξt
k.

Proof. Lemma 3 together with lemma 1 imply that the newβ̂ are a solution of the Laḿe
equations (7) and (8). �

A vectorial fundamental transformation with data(V , ξi , ξ
∗
i ) as in the theorem will be

referred to as a vectorial Ribaucour transformation with data(V , ξi ). In the scalar case the
vectorial Ribaucour transformation reduces to the Ribaucour transformation [3, 7, 12, 14].

The Laḿe equations (7) and (8) are the compatibility conditions for

∂Xj

∂ui
= βjiXi i, j = 1, . . . , N, i 6= j

∂Xi

∂ui
= −

∑
k=1,...,N
k 6=i

Xkβki . (11)

These conditions are equivalent to the fact that the independent tangent vectors
{Xi (u)}i=1,...,N form an orthonormal basis for allu if they do for a particular valueu0,
i.e.X t

iXj = δij . We now show that the vectorial Ribaucour transformation preserves this
orthonormal character for the transformed basis. Indeed, (11) together with (9) implies
X∗i = 0 and the vectorial fundamental transformation givesX̂∗i = 0 if �(ξ, 0), which is
an arbitrary constant matrix, is taken as zero. Hence, lemma 3 implies that

∂X̂i

∂ui
= −

∑
k=1,...,N
k 6=i

X̂kβ̂ki

and recalling that

∂X̂j

∂ui
= β̂j iX̂i i, j = 1, . . . , N, i 6= j

is satisfied, we find that the new tangent vectors{X̂i (u)}i=1,...,N form an orthonormal basis
for all u if they do for some value ofu = u0. Indeed, by choosing�(X, ξ∗) = 0 one gets
Xi (u0) = X̂i (u0); i.e. the initial basis and the transformed one coincide at that point.

Notice that the above results constitute an alternative proof of the theorem.
Notice also that (9) is a direct consequence of the relation

ξi = �(X, ξ∗)tXi i = 1, . . . , N (12)

in fact ∂j (ξi − �(X, ξ∗)tXi ) = 0, as follows from the orthogonality conditions for the
renormalized tangent vectors:X t

iXj = δij (hence we can choose this constant to vanish).
Formula (12) could be considered as the inversion of (9), and it follows that

∂j [�(ξ, ξ
∗)+�(ξ, ξ∗)t −�(X, ξ∗)t�(X, ξ∗)] = 0 j = 1, . . . , N.
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Indeed, if we assume that this constant operator vanishes, i.e.

�(ξ, ξ∗)+�(ξ, ξ∗)t = �(X, ξ∗)t�(X, ξ∗) j = 1, . . . , N

then we can write

X̂j = OXj j = 1, . . . , N

with O := I−�(X, ξ∗)�(ξ, ξ∗)−1�(X, ξ∗)t ∈ O (N ) is an orthogonal matrix,O−1 = Ot.
This again, constitutes a proof of our main result.

4. Permutability

In [6] a permutability theorem for the vectorial fundamental transformation of quadrilateral
lattices was proven; here we give its continuous limit to conjugate nets.

Permutability of vectorial fundamental transformations.The vectorial fundamental
transformation with transformation data(

V1⊕ V2,

(
ξi,(1)

ξi,(2)

)
, (ξ∗i,(1), ξ

∗
i,(2))

)
coincides with the following composition of vectorial fundamental transformations.

(1) First transform with data

(V2, ξi,(2), ξi,(2))

and denote the transformation by′.
(2) On the result of this transformation apply a second one with data

(V1, ξ
′
i,(1), ξ

′
i,(1)).

Therefore, the composition of two vectorial fundamental transformations yield,
independently of the order, a new vectorial fundamental transformation, hence the
permutability character of these transformations. Moreover, from this result it also follows
that the vectorial fundamental transformation is just a superposition of a number of
fundamental transformations.

One can easily conclude that this result can be extended to the vectorial Ribaucour
transformation for orthogonal conjugate nets.

Proposition. The vectorial Ribaucour transformation with transformation data(
V1⊕ V2,

(
ξi,(1)

ξi,(2)

))
as prescribed in our theorem, coincides with the following composition of vectorial
Ribaucour transformations.

(1) First transform with data

(V2, ξi,(2))

and denote the transformation by′.
(2) On the result of this transformation apply a second one with data

(V1, ξ
′
i,(1)).
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Proof. Because the transformation data follows the prescription of our theorem, they must
satisfy

(ξ∗i,(s))
t = ∂ξi,(s)

∂ui
+

∑
k=1,...,N
k 6=i

ξk,(s)βki s = 1, 2

�(ξ(s), ξ
∗
(s))+�(ξ(s), ξ∗(s))t =

∑
k=1,...,N

ξk,(s) ⊗ ξt
k,(s) s = 1, 2

�(ξ(1), ξ
∗
(2))+�(ξ(2), ξ∗(1))t =

∑
k=1,...,N

ξk,(1) ⊗ ξt
k,(2).

Thus, we see that the first vectorial fundamental transformation is a vectorial Ribaucour
transformation with data(V , ξi,(2)). Now, applying lemma 3, we see that the vectorial
fundamental transformation of point (2). is also a vectorial Ribaucour transformation.�

5. The Cartesian background

For the zero backgroundβij = 0 we have that the solutions of (2) are any set of functions
{ξi}i=1,...,N of the form

ξi = ξi (ui) ∈ RM

and for the adjoint we have

ξ∗i =
dξti
dui

.

We also have

�(ξ, ξ∗)(u) =
∑

k=1,...,N

�i(ui)

with

�i(ui) =
∫ ui

ui,0

dui ξi ⊗
dξt

i

dui
+�i,0

�i,0+�t
i,0 = (ξi ⊗ ξt

i )|ui,0.
In particular, the Cartesian background hasXi = ei , {ei}i=1,...,N a canonical basis ofRN ,
Hi = 1 and the coordinates arex(u) = u. This implies that

�(X, ξ∗)(u) = A+
∑

k=1,...,N

ei ⊗ ξt
i (ui)

�(ξ, H)(u) = c+
∑

k=1,...,N

∫ ui

ui,0

dui ξi (ui)

whereA is a constantN ×M matrix andc ∈ RN is a constant vector, and the orthogonal
conjugate net is given by

x(u) = u−
[
A+

∑
k=1,...,N

ei ⊗ ξt
i (ui)

][ ∑
k=1,...,N

�i(ui)

]−1[
c+

∑
k=1,...,N

∫ ui

ui,0

dui ξi (ui)

]
.
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6. Conclusions

In contrast with the well known Laplace and Levy transformations there is no literature
on sequences of Ribaucour transformations; however, in [5] a permutability theorem was
proven for the two-dimensional case iterating the Ribaucour transformation twice. Later
in [1], see also [2], it was found in the three-dimensional case and in [9] one can find
the extension to any dimension. Recently, in [10] three Ribaucour transformations were
iterated in three-dimensional space to obtain some results related to permutability. The
permutability theorem for the scalar fundamental was established in [11].
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